- خصائص المنشور سباعي الأضلاع
- 1- البناء
- 2- خصائص قواعدها
- 3- المساحة اللازمة لبناء منشور سباعي الأضلاع
- 4- الحجم
- المراجع
A منظور السباعية هو شكل هندسي ذلك، كما يوحي اسمها، ينطوي على تعريفين الهندسية التي هي: المنشور والمسبع.
"المنشور" هو شكل هندسي يحده قاعدتان متساويتان ومتوازيتان مضلعتان وأوجههما الجانبية متوازية الأضلاع.
"سباعي الأضلاع" هو مضلع يتكون من سبعة (7) جوانب. نظرًا لأن سباعي الأضلاع عبارة عن مضلع ، فقد يكون منتظمًا أو غير منتظم.
يقال إن المضلع منتظم إذا كانت جميع جوانبه لها نفس الطول وزواياه الداخلية متساوية ، وتسمى أيضًا مضلعات متساوية الأضلاع ؛ وإلا سيقال أن المضلع غير منتظم.
خصائص المنشور سباعي الأضلاع
فيما يلي بعض الخصائص التي يتمتع بها المنشور السباعي ، مثل: بنائه ، وخصائص قواعده ، ومساحة جميع أوجهه وحجمه.
1- البناء
لبناء منشور سباعي الأضلاع ، من الضروري وجود شكلين سباعي الأضلاع ، وهما قواعده وسبعة متوازي أضلاع ، واحد لكل جانب من جوانب الشكل السباعي.
تبدأ برسم سباعي ، ثم ترسم سبعة خطوط عمودية متساوية الطول تخرج من كل رأس من رؤوسه.
أخيرًا ، يتم رسم سباعي آخر بحيث تتوافق رؤوسه مع نهاية الخطوط المرسومة في الخطوة السابقة.
يُطلق على المنشور السباعي المرسوم أعلاه اسم المنشور السباعي الأيمن. ولكن يمكنك أيضًا الحصول على منشور مائل سباعي الأضلاع مثل الذي في الشكل التالي.
2- خصائص قواعدها
نظرًا لأن قواعدها هيبتاغون ، فإنها تحقق أن الرقم القطري هو D = nx (n-3) / 2 ، حيث "n" هو عدد جوانب المضلع ؛ في هذه الحالة لدينا أن D = 7 × 4/2 = 14.
يمكننا أيضًا أن نرى أن مجموع الزوايا الداخلية لأي سباعي (منتظم أو غير منتظم) يساوي 900º. يمكن التحقق من ذلك من خلال الصورة التالية.
كما ترى ، هناك 5 مثلثات داخلية ، وباستخدام مجموع الزوايا الداخلية للمثلث يساوي 180 درجة ، يمكن الحصول على النتيجة المرجوة.
3- المساحة اللازمة لبناء منشور سباعي الأضلاع
نظرًا لأن قاعدته عبارة عن سباعي أضلاع وجوانبه سبعة متوازي أضلاع ، فإن المساحة اللازمة لبناء منشور سباعي الأضلاع تساوي 2xH + 7xP ، حيث "H" هي مساحة كل سباعي الأضلاع و "P" هي مساحة كل متوازي أضلاع.
في هذه الحالة ، سيتم حساب مساحة سباعي منتظم. لهذا ، من المهم معرفة تعريف apothem.
العمودي هو خط عمودي يمتد من مركز المضلع المنتظم إلى نقطة المنتصف في أي من جوانبه.
بمجرد أن يتم التعرف على العروة ، تكون مساحة الشكل السباعي هي H = 7xLxa / 2 ، حيث "L" هو طول كل جانب و "a" هو طول الحرف.
من السهل حساب مساحة متوازي الأضلاع ، يتم تعريفها على أنها P = Lxh ، حيث "L" هو نفس طول ضلع سباعي الأضلاع و "h" هو ارتفاع المنشور.
في الختام ، كمية المواد اللازمة لبناء منشور سداسي الأضلاع (بقواعد منتظمة) هي 7xLxa + 7xLxh ، أي 7xL (a + h).
4- الحجم
بمجرد معرفة مساحة القاعدة وارتفاع المنشور ، يتم تعريف الحجم على أنه (مساحة القاعدة) x (الارتفاع).
في حالة المنشور السباعي (ذو القاعدة العادية) ، يكون حجمه V = 7xLxaxh / 2 ؛ يمكن كتابتها أيضًا على الشكل V = Pxaxh / 2 ، حيث "P" هو محيط سباعي الأضلاع المنتظم.
المراجع
- بيلشتاين ، ر. ، ليبسكيند ، س ، ولوت ، جي دبليو (2013). الرياضيات: نهج حل مشكلة لمعلمي التعليم الابتدائي. محرري لوبيز ماتيوس.
- Fregoso، RS، & Carrera، SA (2005). الرياضيات 3. الافتتاحية Progreso.
- غالاردو ، جي ، وبيلار ، PM (2005). الرياضيات 6. المقدمة الافتتاحية.
- Gutiérrez، CT، & Cisneros، MP (2005). دورة الرياضيات الثالثة. المقدمة الافتتاحية.
- كينزي ، إل ، آند مور ، تي إي (2006). التماثل والشكل والفضاء: مقدمة في الرياضيات من خلال الهندسة (مصور ، طبع ed.). Springer Science & Business Media.
- ميتشل ، سي (1999). تصاميم خط الرياضيات المبهر (إيضاح مصور). شركة سكولاستيك
- R. ، MP (2005). أرسم السادس. المقدمة الافتتاحية.